
AD-A139 268 EXPERIMENTAL DESIGN :REVIEW AND COMMEN(U) WISCONSIN I/
UNIV MADISON MAT MEMATICs RE SEAR CH CENTEN
DM STEINBENG ET AL FEN 84 MN -SR- 2 639

N ASSI 0 OAA29- 85 C 0 04 1FIG 12/1 N

EhEEEEomhEmEE
mEEEmhEEEohmhE
EhEEohEohohmhI
EohhhmhEmhohhI
EhEEEEEEEEEmmhI



1111 1.0 L~128 1122

11111I2 .6. ~* ___

11111 1.4 1

M(tROCOPY R[SOLLUIIN UIts lIARI



MRC Technical Sumary Report #2639

EXPERIMENTAL DESIGN:

REVIEW AND COMMENT

David M. Steinberg
and

William G. Hunter

Mathematics Research Center
University of Wisconsin-Madison
610 Walnut Street
Madison, Wisconsin 53705

DTIC
February 1984 ELEC

(Received December 23, 1983) 
S B

B

Approved for public release
Distribution unlimited

C FLE COPY
Sponsored by

U. S. Army Research Office National Science Foundation
P. 0. Box 12211 Washington, DC 20550
Research Triangle Park
North Carolina 27709



UNIVERSITY OF WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

EXPERIMENTAL. DESIGN: REVIEW AND COMMENT

David M. Steinberg and William G. Hunter

Technical Summary Report #2639

February 1984

ABSTRACT
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We review .ajor developments in the design of experiments, offerseur

thoughts on important directions for the future, and make5,specific

recommendations for experimenters and statisticians who are students and

teachers of experimental design, practitioners of experimental design, and

researchers jointly exploring new frontiers. Specific topics covered are

optimal design, computer-aided design, robust design, response surface design,

mixture design, factorial design, block design, and designs for nonlinear

models.
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SIGNIFICANCE AND EXPLANATION

Statistics is concerned not just with the analysis of data, but also with
how data are collected. Such concern is quite natural, for analysis cannot be
truly successful unless the data are informative, and the best way to assure
informative data is to apply statistical principles to the way in which they
are collected. One area in which statistics has made notable contributions to
collecting informative data is experimental design. This paper provides a
general, non-technical review of statistical work in experimental design,
discusses important directions for future research, and makes some specific
recommendations.

The focus of the paper is on those areas of experimental design that are
most useful in the physical, chemical, and engineering sciences. Specific
topics covered are:
1. Optimal design, in which specific criteria are developed and studied in an
attempt to derive designs that will provide the experimenter with the most
precise inferences possible.
2. Computer-aided design, in which computer algorithms that find optimal
designs, or designs with other desired properties, are developed.
3. Robust design, which studies the sensitivity of experimental designs to
departures from assumptions on which those designs were based.
4. Response surface designs, which exploit a simple, sequential experimental
strategy to explore the relationship between a response variable and several
continuous inputs.
5. Mixture designs, which provide strategies for modeling a response that
depends on the relative amounts of several continuous inputs.
6. Factorial design, which emphasizes the usefulness of varying several
factors simultaneously in an experiment, rather than just one factor at a
time, and proposes economical strategies to do so.
7. Block designs, which offer efficient schemes for comparing several
different treatments.
8. Designs for nonlinear models, which suggest useful ways to design
experiments when the response is assumed to be a nonlinear function of unknown
parameters.

The paper concludes by addressing several recommendations to
experimenters and statisticians to encourage the increased use of
statistically designed experiments and to facilitate the interchange of ideas
between statisticians and experimenters that is an essential stimulus to
future research in this area.
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EXPERIMENTAL DESIGN: REVIEW AND COMMENT

David M. Steinberg and William G. Hunter

1. INTRODUCTION

Fisher's pioneering work at/othamsted Experimental Station in the 1920's

and 1930's firmly established the role of statistics in experimental design

and, vice versa, the role of experimental design in statistics. His

monumental work was guided by the key insight that statistical analysis of

data could be informative only if the data themselves were informative, and

that informative data could best be assured by applying statistical ideas to

the way in which the data were collected in the first place. In the process,

Fisher radically altered the role of the statistician: from one of

after-the-fact technician to one of active collaborator at all stages of an

investigation.

Fisher was employed to analyze data from studies conducted at Rothamsted,

but he soon realized that some important questions could not be answered

because of inherent weaknesses in the planning of many of the experiments. In

fact, in one particularly unfortunate instance, he said that the only analysis

he could perform was a post-mortem to find out why the study had died. Box

(1980) described Fisher's work on the design of experiments, and how much of

it was inspired by problems of field experimentation: he developed his

insights concerning randomization, blocking, and replication; he invented new

classes of experimental designs; he worked together with scientists who

applied his ideas in their experiments; by mail, he advised experimenters in

other places; and he wrote about his ideas to help investigators realize

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. The
research of David Steinberg was based upon work supported by the National
Science Foundation under Grant No. MCS-8210950.



richer harvests of information from their investments in experimental work.

The collaborative way in which Fisher worked with the scientists at

Rothamsted, aiding them in their experimental research and then using his

experiences as the motivation for important statistical research, still serves

as a model for statisticians to emulate. For a more detailed account of

Fisher's work at that time, see Yates and Mather (1963), Yates (1964), Box

(1978), and the tributes to Fisher in Biometrics (1962, Volume 18, 437-454).

Since Fisher first introduced statistical principles of experimental

design, much useful statistical research has been done. Our primary purpose

in this article is to provide a summary of selected work in experimental

design, rather than an exhaustive review of the literature, and to offer some

thoughts about future directiors. Wherever possible, we will refer the reader

to books that discuss the basic ideas of experimental design and present many

of the most widely used plans and to other good review articles summarizing

research on experimental design and highlight only the most recently published

results. (See Hahn 1982b for a useful review of available books on

experimental design.) We will focus especially on the design of experiments

in the physical, chemical, and engineering sciences.

During the last quarter century, many papers on the design of experiments

have appeared in Technometrics. Given the jubilee nature of this article, we

felt it would be appropriate to begin by reading those papers, a task that

proved both enjoyable and rewarding. Our summary of this research, which is

presented in Section 2, provides a perspective from which to evaluate current

research. In Sections 3-10 we review research in several major areas:

optimal design, computer-aided design, design robustness and design

sensitivity, response surface designs, mixture designs, factorial designs,

block designs, and designs for nonlinear models. In Section 11 we discuss
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some topics that we believe deserve further study, and we offer some personal

reflections on fuiture directions. We conclude in Section 12 with some

recommendations for experimen.ers and statisticians.

2. EXPERIMENTAL DESIGN IN TECHNOMETRICS

Experimental design has always been a prominent topic in Technometrics.

Figure I shows the percentage of pages in Technometrics devoted to this

subject on a yearly basis from 1959 through 1982. (We have included here all

papers and notes whose principal focus is on the theory or technique of

designing experiments, excluding papers that deal only with the analysis of

particular types of designs. We have not counted book reviews, letters to the

editor, corrigenda, and other editorial material.) The first years of

Technometrics witnessed a profusion of articles on experimental design, which

occupied 20% to 30% of the space in the journal. While such a high concentra-

tion has not been maintained in subsequent years, the percentage has still

consistently exceeded 10%. By contrast, the Journal of the American

Statistical Association devoted less than I% of its pages in 1982 to articles

on experimental design, the corresponding figure for the Annals of Statistics

in 1982 was 4%.

Thus experimental design has clearly been a topic of major interest for

Technometrics. An informative picture of the development of research on

experimental design and its applications emerges from an examination of these

articles. The first issues of Technometrics included many articles on

factorial and fractional factorial designs and block designs, topics that were

originally explored in the context of agricultural experimentation. Their

appearance in Technometrics marked a realization that these concepts are also

important in the physical, chemical, and engineering sciences. Moreover, the
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confrontation of existing ideas in experimental design with new areas of

application sparked creativity. Innovative modifications and extensions of

classical experimental designs were developed and many useful articles were

published in a short time. Following this initial period of enthusiasm,

articles on these particular topics have continued to appear, but only

sporadically.

One topic that has received continuing attention in Technometrics is the

design of response surface experiments. Response surface methodology was

stimulated by problems arising in chemistry and chemical engineering, in

particular how to improve the performance of systems by modifying the settings

of process variables (Box and Wilson 1951). The strategy advocated was to use

a sequence of simple experimental designs to locate and then explore regions

that promised high levels of performance. The basic building blocks were

directly borrowed from or were extensions of the classical factorial designs

initially used in agriculture and biology. The new conceptual framework

offered by response surface methodology, especially its appeal to geometric

ideas, stimulated much new research. Technometrics was a natural forum for

the discussion of these new ideas. Response surface methodology provides an

example of the type of stimulation that was provided by the appearance of this

new journal in the statistics literature. A steady flow of articles on

response surface design appeared throughout the 1960's and into the 1970's,

but has abated in recent years.

Three new subjects assumed prominence in the 1970's: optimal design,

computer-aided design, and mixture design. Two related topics that have come

to the fore in the last 10 years are design robustness and design sensi-

tivity. Research work in robustness and sensitivity is important because

experiments sometimes must be planned in the face of a considerable degree of

model uncertainty.

-5-



The emergence of optimal design as a central concern can be seen quite

clearly in Technometrics: through 1970 only two articles dealt explicitly and

primarily with optimal design, but since 1970 that number has increased to

more than a dozen. Interest in computer-aided design has grown for two

reasons: advances in computer technology and the increasing influence of

optimal design theory. Much of the work in computer-aided design has gone

into the development of powerful algorithms for finding optimal designs and

other designs with certain desired properties (e.g., orthogonality of some

factor effects, or particular confounding patterns). Mixture designs,

although first discussed in the 1950's, received little attention prior to

19701 however, they have stimulated great interest over the last 10 years,

including more than 15 articles in Technometrics.

3. OPTIMAL DESIGN

The traditional motivation underlying the theo'y of optimal design is

that experiments should be designed to achieve the most precise statistical

inference possible. Kiefer (1981) stated that research work on optimal design

arose in part as a reaction to earlier research on design, which emphasized

attractive combinatoric properties rather than inferential properties. Design

optimality was first considered by Smith (1918), and early work in the subject

was done by Wald (1943), Hotelling (1944), and Elfving (1952). The major

contributions to the area, however, were made by Kiefer (1958, 1959) and

Kiefer and Wolfowitz (1959, 1960), who synthesized and greatly extended the

previous work. Although the ideas of optimal design initially generated

considerable controversy (see, for example, the discussion accompanying the

paper by Kiefer 1959), they have since become well-established in the

statistical literature. In some areas, such as the design of block
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experiments, the use of optimal design theory is now accepted as a fundamental

tool for comparing designs (see Section 9). In other areas, however, there is

still disagreement over the applicability of optimal design theory (see, for

example, the discussion in Section 6 on response surface designs).

Excellent reviews of research work on optimal design have appeared. For

readers interested in the most recent developments in optimal design, we

recommend the reviews by Atkinson (1982), Pazman (1980), and Ash and Hedayat

(1978). The review by St. John and Draper (1975) provides a good introduction

to the topic. The recent book by Silvey (1980) presents a concise summary of

the classical results in optimal design theory, and the book by Fedorov (1972)

is a valuable compendium of results.

The influence of optimal design has extended to almost all areas of

experimental design, and it will be useful to review some of the most basic

definitions and results because they will be needed in subsequent sections.

To apply optimal design theory in practice requires a criterion for comparing

experiments and an algorithm for optimizing the criterion over the set c

possible experimental designs. We will define the most commonly used criteria

here but will defer the consideration of algorithms to Section 4. The

classical criteria are derived within the context of linear model theory in

which it is assumed that the experimental data can be represented by the

equation

Yi - f(Zi )'A + ci' (3.1)

where Yi is the measured response from the ith experimental run, xi is a

vector of predictor variables for the ith run, f is a vector of p

functions that model how the response depends on xi' P is a vector of p

unknown parameters, and Ci  is the experimental error for the ith run.

-7-



A natural way to measure the quality of statistical inference with

respect to a single parameter is in terms of the variance of the parameter
2

estimate. If the errors are uncorrelated and have constant variance 0 , the

variance-covariance matrix of the least squares estimator is

var A} - (3.2)

where 4 is the nxp matrix whose ith row is Z(i). We will limit our

discussion here to the case where X has full column rank. (Mathematically,

the theory is not substantially different if X is not of full rank.)

Another useful way to measure the quality of inference is in terms of the

variance of the estimated response at Z, which, from (3.1), is given by

dW - a2 VX) '') flx) (3.3

Both (3.2) and (3.3) depend on the experimental design only through the px)

matrix (X'X)-I, and suggest that a good experimental design will be one t

makes this matrix small in some sense. Since there is no unique size orderi.,

of the pxp matrices, various real-valued functionals have been suggested as

measures of "smallness." The most popular of these optimality criteria are

listed below:

1. D-Optimality - A design is said to be D-optimal if it minimizes

det w where det denotes determinant.

2. A-Optimality - A design is said to be A-optimal if it minimizes

tr (1'1)- , where tr denotes trace.

3. E-Optimality - A design is said to be E-optimal if it minimizes the

maximal eigenvalue of

4. G-Optimality - A design is said to be G-optimal if it minimizes

max d(z), where the maximum is taken over all possible vectors x of

predictor variables.
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5. I.-Optimality - A design is said to be IA -optimal if it minimizes

f d(x)A(dx), where A is a probability measure on Lhe space of predictor

variables. This criteri-i, which is sometimes called average integrated

variance, also belongs to a more geineral class of L-optimality criteria

discussed by Fedorov (1972).

One important result in optimal design theory is the general equivalence

theorem (Kiefer and Wolfowitz 1960), which links D- and G-optimality. The

theorem is phrased in terms of design measure, in which a design is

represented by a probability measure on the predictor variable space. Thus,

for example, a trial of n runs (an "exact" design) would be represented as a

discrete measure with mass i/n at each of the n points of the design. The

concept of design measure is useful in studying optimal design theory from a

mathematical point of view because it replaces a discrete optimization problem

(finding the optimal "exact" design) with a continuous problem (finding the

optimal design measure) which is often easier to solve. Although the solution

to the continuous problem might, in theory, be a measure with infinitely many

support points, Kiefer and Wolfowitz (1960) showed that solutions could always

be limited to measures with finitely many support points; the value of the

measure at each point would then give the optimal proportion of runs that

should be made there. The General Equivalence Theorem state . that among

design measures &, the following three conditions are equivalent:

1. E* is D-optimum.

2. &* is G-optimum.

3. max d(x;E*) p.

The third condition, which provides a simple way to check whether a design is

D- and G-optimal, is useful in constructing such designs.

-9-



4. COMPUTER-AIDED DESIGN OF EXPERIMENTS

Research on the use of computers in the design of experiments has been

closely related to the increasing attention given to optimal design in the

literature. As described in the previous section, the basic idea of optimal

design is usually to choose a design that optimizes some inference criterion

over the set of designs being considered. In practice, this optimization

problem may be difficult or impossible to solve analytically. The first

research done on using the computer as an essential aid in tackling this

problem in experimental design was apparently that by Box and Hunter

(1965a,b) on design for nonlinear models. The remainder of the present

section will emphasize the use of computers in the design of linear regression

and factorial experiments. We will discuss the two topics in turn.

4.1 Regression Experiments

Much research has been concerned with the development of constructive

algorithms that can be used to find optimal or near-optimal designs. Initial

work on the development of such algorithms focused on finding D- and G-optimal

design measures (Wynn 1972, Fedorov 1972, Atwood 1973). *These algorithms

involve the construction of a sequence of design measures in which each

succeeding measure is a convex combination of the current measure and a point

mass whose location is chosen with the aid of the third condition of the

General Equivalence Theorem stated in Section 3. General conditions for such

algorithms to converge to an optimal design measure were given by Wu and Wynn

(1978).

Computer-aided design of regression experiments was stimulated by the

desire to achieve exact n-run optimal designs. In some cases good designs can

be found directly from an optimal design measure by spreading out the runs to

-10-



approximate the optimal allocation. For designs with a small number of runs

or models with many parameters, however, this strategy may be difficult to

implement or may lead to designs that are quite inefficient.

Improvements in computer technology have made it possible to adopt an

alternative scheme: developing computer progrmw to directly find exact n-run

optimal designs. The most popular computer algorithm developed to date, known

as DETMAX, was originated by Mitchell (1974a,b) to find D-optimum designs.

This program requires the user to specify the model and the number of

experimental runs (n), and to list all the possible design points for the

experiment. An initial n-run starting design may be supplied by the user or

generated by the program. The program then seeks to maximize det ( ' ),

which is equivalent to minimizing det (!')1, by adding and deleting design

points until a convergence criterion is satisfied. The choice of which point

to add or delete at each step is made so that det (g'j) is maximized among

all possibilities. Galil and Kiefer (1980b) showed that this criterion will

always add a design point at which the variance of the estimated response

(equation 3.3) is greatest; this property is related to the result of the

general equivalence theorem that the variance of the estimated response for an

optimal design measure obtains its maximum value at each of the design

points. The DETMAX program allows the possibility of "excursions," in which

several points are added and then several points deleted, in the hope of

avoiding local maxima. Mitchell (1974a) also recommended that a number of

different starting designs be used because no one starting design is

guaranteed to lead to an optimum design. Several characteristics are

calculated for designs at or near the D-optimal design and these properties

may be used as additional bases of comparison.

-11-



Mitchell (1974b) used the DETMAX program to tabulate designs for

first-order regression models with up to nine factors and a variety of sample

sizes. Mitchell and Bayne (1978) used the program to find fractions of

three-level factorial designs for models including some two-factor

interactions and for models including two-factor interactions and pure

quadratic terms.

Galil and Kiefer (1980b) developed useful modifications to DETMAX, which

led to a substantial reduction in the amount of time needed to search for an

optimal design and in the amount of computer space required by the program.

They also proposed a systematic method for generating an initial design. The

reduction in time is quite important because it allows many more starting

designs to be used for a fixed computer budget, thereby increasing the chance

of finding an optimal exact design. The space-saving methods make it possible

to study larger problems. Galil and Kiefer also studied in detail the problem

of quadratic regression for designs that are fractions of three-level

factorials and tabled the best designs found by the modified DETMAX algorithm.

A new program developed by Welch (1982) takes advantage of the

branch-and-bound optimization strategy. This program is more powerful than

DETMAX in that it is assured to find all possible n-run optimal designs for a

given model and a specified set of possible design points. It is not clear,

however, what additional cost in Central Processing Unit (CPU) time may be

involved. Welch also considered in detail the problem of quadratic regression

with three-level factors and proved that some of tbe designs tabled by Galil

and Kiefer (1980b) were, in fact, D-optimal.

Snee and Marquardt (1974) considered the special problem of optimal

design for mixture experiments (see Section 7). Their XVERT program was

designed to find extreme vertices of the design region and to calculate

-12-



several optimality criteria for a variety of extreme vertex designs. Snee

(1979) described the CONSIM algorithm for finding extreme vertices and

centroids of mixture design regions and recommended that it be combined with

XVERT (when there are at most four mixture components) or with DETMAX (when

there are five or more components) to generate experimental designs. Nigam,

Gupta, and Gupta (1983) proposed a modified version of the XVERT algorithm for

finding extreme vertices of mixture design regions; the modified algorithm

involves less computational effort than does XVERT but the authors found that

there was little loss of efficiency.

One of the common features of the above papers is their use of a design

region with a finite number of possible design points, rather than a

continuous region with infinitely many points. The primary reason for

limiting the algorithms to finite design spaces is to simplify the task of

selecting what point to add to an existing design. The benefit of each

candidate point can be computed and the best point is then selected. The use

of a finite design region is reasonable on practical grounds even when some of

the factors are continuous, quantitative variables because an experimenter's

ability to exactly fix the levels of quantitative factors in an experiment is

limited. If, however, there are many possible settings for each quantitative

factor, so that the number of design points, although finite, is quite large,

a more efficient strategy may be to treat the design region as though it were

continuous. To choose the new design point from a continuous region, a

functional optimization algorithm must be implemented and the success of the

design algorithm will depend, at least in part, on the ability of the

optimization algorithm to find the best point to add at each iteration.

-13-



Cook and Nachtsheim (1980) used Powell's (1964) conjugate direction

method to maximize det (,gl at each iteration and compared several computer

design algorithms. Not surprisingly, they found that the best results were

obtained by those algorithms that required the most CPU time. They concluded

that DETMAX (without Galil and Kiefer's modifications) gave good results

relative to the amount of CPU time it required.

Evans (1979) presented a simple computer algorithm for augmenting an

existing experimental design by a fixed number of runs so that the combined

design would be D-optimal. His algorithm called for simultaneously choosing

all the new design points, rather than the sequential selection characteristic

of other methods, and used a modified version of Nelder and Mead's (1965)

simplex method to maximize det (i'!). Both DETMAX and Welch's algorithm also

allow the user to augment an existing design, although within the framework of

a finite design space.

Johnson and Nachtsheim (1983) studied several problems in the

construction of designs on continuous, convex design spaces. They concluded

that Evans's approach of simultaneously searching for all the new points to be

added to an existing design offered little improvement over sequential search

procedures. They compared several optimization algorithms for choosing the

point that maximizes det (Z') and found that Powell's (1964) algorithm gave

the best results. Finally, they found that Galil and Kiefer's (1980b) method

of generating an initial design was quite successful.

One of the -first articles on computer-aided design of regression

experiments took an approach quite different from those described previously.

Kennard and Stone (1969) argued that a good design should cover the design

space as uniformly as possible. They developed the CADEX algorithm to achieve

this goal by sequentially choosing that point furthest from the current design

-14-
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points. They favored the use of this uniform coverage criterion because it

does not require the assumption of any particular model such as (3.1) for the

response and because, when several response variables are measured, the same

design will be appropriate for each one.

4.2 Factorial Experiments

Computer algorithms have also been developed to aid in the design of

factorial experiments. Patterson (1976) described the DSIGN program, which

produces designs for factors at any number of levels with a variety of

blocking structures, including Latin squares and split plots, according to a

generating design key supplied by the user. The design key specifies the plot

aliases of the main effects of treatment factors. Bailey, Gilchrist, and

Patterson (1977) and Patterson and Bailey (1978) described the use of design

keys in identifying confounding patterns and in constructing designs. The

designs produced by the DSIGN program are compared on the basis of their

confounding patterns, rather than any of the formal optimality criteria

mentioned earlier.

Jones and Eccleston (1980) described a computer algorithm for the

generation of optimal block designs. As an optimality criterion, they

proposed minimizing the weighted sum of the variances of a set of treatment

contrasts, which is similar to the criterion for A-optimality. This criterion

depends on two characteristics of the design: the replication numbers, which

state how many times each treatment will be used, and the set of concurrences,

which gives the number of times each pair of treatments occurs in the same

block. The algorithm determines the replication numbers and concurrences in

two separate stages, known as exchange and interchange. Beginning with an

initial design that specifies the treatments assigned to each block, the

-15-



exchange procedure locates runs that contribute little to the optimality

criterion and seeks to find different treatments for those runs that will make

a greater contribution. Thus the exchange procedure alters the initial

replication numbers and the set of concurrences. The interchange procedure

then seeks to improve the optimality criterion by switching the block

assignments of pairs of treatments (e.g., the blocks ABC, DEF might be

changed to ABF, DEC by interchanging treatments C and F). Thus the

interchange procedure does not affect the replication numbers but does change

the set of concurrences. Eccleston and Jones (1980) extended the

exchange-interchange algorithm to designs for the elimination of both row and

column effects.

Wu (1981a) presented a computer algorithm for assigning experimental

units to different treatments when categorical covariate information is

available for each unit. The algorithm is designed to balance the covariates

across the different treatments, yet is surprisingly simple and requires no

matrix inversion.

5. DESIGN ROBUSTNESS

Box (1953) introduced the word "robust" in the statistical literature to

describe procedures that give good results even though there might be

violations in the assumptions upon which these procedures are based.

Following up a line of research initiated by Pearson (1931), Box (1953)

examined the effect on the analysis of variance and on Bartlett's test of

departures from normality, an assumption underlying both procedures. Pearson

(1931) had discovered that the analysis of variance is robust to such

violations of assumption, but suggested that his conclusion would not be valid

for comparing estimates of variance based on independent samples. Box (1953)

-16-



found that, indeed, Bartlett's test is quite sensitive to departures from

normality. This result led him to observe that the use of Bartlett's test as

a preliminary to the analysis of variance -- a practice recommended by some

statisticians at the time -- was "rather like putting to sea in a rowing boat

to find out whether conditions are sufficiently calm for an ocean liner to

leave portl" (p. 333).

The examination of standard statistical techniques to determine their

sensitivity to assumptions and the development of new techniques that are less

sensitive have been focal points of statistical research in the last two

decades (see Huber 1981). Experimental design is an area in which it is

particularly compelling to investigate questions of robustness because a

researcher's assumptions about the experimental process are often crucial in

determining the design. Moreover, the design must be chosen before the data

are collected and so cannot be discarded if the data indicate that the

assumptions are seriously incorrect. (By contrast, techniques for data

analysis may be replaced by other alternatives if their use is contraindicated

by the observed data.) Thus it is important to examine experimental designs

for sensitivity to assumptions. Interest in design robustness, therefore,

should come as no surprisel if anything, we are surprised that this topic has

not attracted greater attention.

The assumption that underlies most research work in experimental design

is that the experiment can be adequately described by an equation of the form:

response - model + error, (5.1)

where the model states the effect of the predictor variables on the response

variable and the error describes the general form of departures from the

model. Experimenters frequently have tentative models in mind, either on the

basis of theoretical considerations or on the belief that a simple empirical

-17-



model will be adequate, at least over the current range of experimentation.

It is unlikely, however, that the experimenter will be absolutely certain that

any tentatively entertained model will be adequate, and design strategies that

fail to take this uncertainty into account must be viewed with some

skepticism. In particular, designs derived using the optimality criteria

discussed in Section 3 are known to depend quite critically on the particular

model that is assumed. These designs tend to concentrate all the experimental

runs on a small number of design points and are ideally suited to estimating

the coefficients of the assumed model, but they provide little or no ability

to check for lack of fit. Assumptions about the error component in (5.1) are

typically characterized in terms of a probability distribution and are also

subject to uncertainty. The research work reviewed in this section concerns

the consequences for experimental design of misspecifying the form of the

model or the error.

Two different, but complementary, approaches have been proposed for

planning experiments in the face of model uncertainty. The first approach has

sought designs that will yield reasonable results for the proposed model even

though it is known to be inexact. we call these designs "model-robust

designs" and discuss them in Section 5.1. The second approach has focused on

developing designs that facilitate improvement of the proposed model by trying

to highlight suspected inadequacies. We call these designs "model-sensitive

designs" and discuss them in Section 5.2.

Another line of research in design robustness concerns the implications

for experimental design of inaccurate assumptions about the error rather than

the model. We call these "error-robust designs" and discuss them in Section

5.3.
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5.1 Model-Robust Designs

Box and Draper (1959) were the first authors to consider in depth the

effect of model misspecification on experimental design. They criticized the

common optimality criteria defined in Section 3 for implicitly assuming that

the proposed model is exactly correct. They argued that a more appropriate

criterion for comparing experimental designs is the average mean squared error

(J) over a region of interest R, which is contained in the total experimental

region:

J - (n/o2 ) f E{[;(x) - g(x)]2}dX, (5.2)
R

where g(g) is the true response function, 9( ) is the least squares

estimate of g(;), and 2 - fd5. This expression can be decomposed as the sum
R

of a bias component and a variance component:

J (n/o2 A)(f1[EX{ } - g(x))2 d + fVarg(Z)}dx), (5.3)
R R

respectively. Box and Draper (1959) considered, in particular, the effect of

assuming a first-degree polynomial regression model when the true model is a

second-degree polynomial. They found that the designs that minimized average

mean squared error were similar to those that minimized the bias component

alone, but were quite different from those that minimized the variance

component. Thus their "minimum bias" designs differed markedly from those

implied by the traditional optimality criteria, which consider only functions

of the variance. The "minimum bias" designs could be found by choosing the

design points in such a way that specified moments of the design matched those

of a uniform probability distribution on the region of interest.

Box and Draper (1963) and Huber (1975) reached similar conclusions. Box

and Draper (1963) extended the work discussed above by studying the situation

in which the assumed model is quadratic but the true model is cubic. Huber
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(1975) investigated the sensitivity of optimal design to model

miuspecification by conducting a minimax analysis. For a given design, he

determined what true response function would lead to the greatest mean squared

error. Huber found that optimal designs based on first-degree polynomial

regression models could be subject to considerable bias from quadratic terms.

Kussmaul (1969) investigated the effect of model misspecification in

simple polynomial regression. In particular, he was concerned with the fact

that classical optimal designs tend to concentrate all the experimental runs

at a small number of design points. For example, the D- and G-optimal design

measure for estimating a polynomial model of degree j locates experimental

runs at exacly j + 1 distinct levels of the predictor variable. This design

can provide no indication that a higher degree polynomial may be needed.

Kussmaul suggested that this problem might be overcome by using the G-optimal

design for a polynomial model of degree k, with k slightly greater than

J. He concluded that the loss of efficiency using this design strategy, with

respect to the G-optimality criterion, was quite small and was more than

offset by the added protection of being able to fit a polynomial of higher

degree, if necessary.

Lauter (1974) considered the general problem of optimal design when the

form of the true response function is unknown but assumed to belong to a

specified class of linear models. She proposed extending the common

optimality criteria for an exactly assumed model to the broader class of

models by using different forms of averaging with respect to a weighting

measure on the class of models. The resulting designs are not, in general,

optimal for any of the models, but she claims they should be reasonably

efficient for all models considered likely. Cook and Nachtsheim (1982)

applied Lauter's general approach to polynomial regression. They assumed that
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a low-degree polynomial would probably be adequate to approximate the true

response function, but that a polynomial of higher degree might be

necessary. Designs were compared on the basis of average inefficiency, where

the inefficiency for a polynomial of fixed degree was calculated by comparison

with the best design for that degree. The average was weighted to reflect the

assumption that a low-degree polynomial would probably be adequate by placing

most of the weight on those models.

Several authors have considered modifying the basic model to include

possible effects of model inadequacy. O'Hagan (1978) postulated a Bayesian

model in which @ in (3.1) is replaced by A(,6). The dependence of f on

, is characterized by a prior probability distribution that reflects beliefs

about the likely smoothness and stability of the true response function. For

this model, he found that a design criterion based on posterior variance

favored placing more points near the center of the design region when compared

with constructing designs on the basis of criteria like D-optimality. The

discussion to O'Hagan's paper provides a lively introduction to different

approaches to model robustness in experimental design. Smith and Verdinelli

(1980) adopted a hierarchical Bayesian model of the form analyzed by Lindley

and Smith (1972). The hierarchical structure incorporates a particular model

such as a low-degree polynomial but also reflects the degree to which the

experimenter is confident that the polynomial model is adequate. They

examined the allocation of runs to a fixed set of doses in a dose-response

experiment and found that perfect confidence in an assumed polynomial model

led to the D-optimum allocation for that model. As confidence in the model

decreased, however, the allocation changed smoothly to an even distribution of

runs among the doses. Pesotchinsky (1982) studied the implications for design

of the "approximately linear" regression model of Sacks and Ylvisaker (1978),
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in which the response function is assumed to differ from a first-degree

polynomial by, at most, a fixed convex function. He found that the designs

depended on the form of the fixed function, its magnitude relative to

experimental error, and the sample size. Although Pesotchinsky's approach to

incorporating model inadequacy is quite different from those of O'Hagan and of

Smith and Verdinelli, who used Bayesian models, the magnitude of potential

bias relative to experimental error proved to be a key parameter in all three

papers.

Wu (1981b) considered a different type of robustness -- the possibility

that a simple additive model for a block design would be violated by the

addition of fixed, but unknown, unit effects. Using a minimax criterion to

study the sensitivity of different design strategies, he concluded that

randomized assignment of the units to the treatments was the best way to

obtain designs robust to the contaminating unit effects. Wu's results have

been generalized by Li (1983).

5.2 Model-Sensitive Designs

The research reviewed above was motivated by the desire to make the

analysis of the experiment insensitive, or robust, to possible uncertainties

or inaccuracies in the specification of the model. The experimenter's primary

Interest, however, may be to highlight the uncertainties and inaccuracies in

order to modify or refine the model initially entertained; the experimenter

will then require a design that is sensitive to the differences between

alternative models. Model-robust and model-sensitive designs are quite

similar to one another and share much common ground because the essential idea

behind both concepts is that tentatively proposed models are never exact.
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Some work on model-sensitive designs has been motivated by studies in

which nonlinear models are used (see Sect. 10), although the theory developed

is equally applicable to linear models. The experimenter may be able to list

a set of plausible nonlinear models, perhaps through knowledge of the

underlying experimental mechanism or previous experience with similar

experiments. Experiments are then designed whose primary purpose is to

discriminate among candidate models. Hunter and Reiner (1965), Box and Hill

(1967), Atkinson and Fedorov (1975a,b), and Atkinson (1981) discussed non-

linear models. Atkinson and Cox (1974) discussed linear models. These

techniques have usually been referred to as model discrimination designs; they

are a special case of what we define here as model-sensitive designs.

Hill, Hunter, and Wichern (1968) suggested the use of a design criterion

that simultaneously takes into account the needs of model discrimination and

parameter estimation; they illustrated its use with nonlinear models.

Atkinson (1972) proposed a criterion for the design of linear regression

experiments that have the joint aim of estimating parameters in a tentatively

assumed model and of testing for inadequacy of that model. He considered

models of the form:

Yi = t1( i)'A1 + L 2 (i)'1 2 + il (5.4)

where fl(Zi ) corresponds to the tentatively assumed model and f2(Zi)

corresponds to those additional terms thought most likely to induce bias. For

example, tj might be a first-degree polynomial and _2 might be e function

containing quadratic terms. Selecting from standard classes such as

factorials and central composite designs, Atkinson found experimental plans

that compromise between the two goals.

Jones and Mitchell (1978) studied designs whose primary purpose is to

detect inadequacy of a tentatively assumed linear model in the direction of a

specific alternative model. They also considered models of the form (5.4),
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but used criteria different from Atkinson's. One major difference is that

Jones and Mitchell's designs depend on the unknown parameter vector 42 in

(5.4), while Atkinson's do not. Jones and Mitchell suggested two methods to

overcome this dependence, both of which are related to a design criterion

proposed by Atkinson and Fedorov (1975a,b).

A related approach is that of Stigler (1971), who proposed the idea of

restricted D- and G-optimal designs for polynomial regression, in which the

optimal design for an assumed polynomial model would be found subject to the

restriction that the design should make it possible to estimate a higher-

degree model with some minimal level of precision. This approach leads to a

range of designs that compromise between the unrestricted optimal designs, at

one extreme, and designs that provide maximum power for testing that the

higher degree coefficients are all zero, at the other extreme. Studden (1982)

described an elegant method for constructing such designs.

Morris and Mitchell (1983) studied the special case of designing

two-level multifactor designs that are sensitive to detecting interactions

among the factors. They recommended a sequential approach in which screening

for interactions is done at the earliest possible stage in an experiment and

then forms a basis for planning subsequent runs. They proposed a design

criterion and gave rules for the construction of designs optimizing the

criterion. Their methods make it possible to screen for interactions with

only a small number of experimental runs.

Sometimes the degree of model uncertainty is so great that it becomes

impractical to pursue the methods described above. The task of specifying all

possible models or classes of models and then optimizing a design criterion

may be unmanageable because there are too many models to deal with. In some

applications in chemical kinetics, for example, more than 100 candidate models
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can be listed, all of them nonlinear. Sometimes an xperimen'er is confror.n.Q

with the opposite situation: it is difficult to specify even a single

model. In either of these circumstances it may be best to procee, by putting

forward one model on a tentative basis, even though it is almost certain to h e

incorrect in some important respects. The experimenter might then wish to

employ an efficient experimental plan whose purpose is to provide data that

will, with the greatest sensitivity possible, reveal the inadequacies of the

initial model so that it can he modified or replaced altogether. A desirable

property of such a design is to display shortcomings in the model in a manner

that will best help the investigator to create a better model. The procedure

can be repeated with subsequent models. Unfortunately, the literature on

useful methods of model-building along this line is limited; see, for example,

Box and Hunter (1962), Hunter and Mezaki (1964), Draper and Herzberg (1971),

and Box and Draper (1982).

5.3 Error-Robust Designs

The error terms in (5.1) are typically assumed to be independent and

identically distributed. Further, the common distribution is often assumed to

be a normal distribution. This section will review research in design

robustness that has considered violations in the assumptions concerning the

distribution of the error terms.

Box and Draper (1975) and Huber (1975) studied the possible effects of

OuLi'rs on experimental design for linear models. Huber suggested that

resistance to outliers in the error distribution could be achieved by avoidina

outlying points in the experimental design. To accomplish the latter goal, he

recommended usinq designs for which the diaqonal elements of the "hat" matrix

n = 1)_ 1X' are well below unity (see !oaglin and Welsch 1978 for a
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discussion of the "hat" matrix and its relationship to outliers). Box and

Draper (1975) showed that the effect of one or more wild observations on the

vector of predicted values is proportional to h2it where hii is the ith

diagonal element of the matrix R defined above. This sum is minimized if

hii = p/n for all i, so that Huber's recommendation may be interpreted as

adding to the Box-Draper criterion a requirement that p/n not be too

large. Draper and Herzberg (1979) extended the work of Box and Draper (1975)

by studying the effect of outliers on mean squared error when the model is a

polynomial of low degree but is subject to bias from terms of higher degree.

Herzberg and Andrews (1976.) and Andrews and Herzberg (1979) considered

the possibility that some observations would be missing altogether or would be

so extreme that they would be entirely discarded from the analysis. They

proposed several measures of robustness against such occurrences, such as the

probability that the "effective" X matrix (i.e., the X matrix for the

remaining points) would not have full rank and the expected value of the

D-criterion for the design, where the relevant probability distribution for

these calculations is that which specifies the probabilities that the planned

observations will actually be usable in subsequent analysis. They found that

some conventional optimal designs are not robust under these criteria, which

tend to favor designs with some repeated points.

Another standard assumption is that the error terms Ei are

stochastically independent. Sacks and Ylvisaker (1966) studied the problem of

designing regression experiments when the errors are correlated, as miqht

happen if the observations are realizations of a time series. They derived

asymptotic characterizations of optimal designs, which call for taking all the

observations at distinct points. These designs differ from the optimal

designs derived under the assumption of independence, which tend to replicate
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many observations at a small number of design points. These results were

generalized by the authors in a later paper (Sacks and Ylvisaker 1968) and by

Wahba (1971). Eubank, Smith, -and Smith (1981, 1982) have proved some

uniqueness results for thrise desiqns.

A different approach to the problem of correlated errors has been

explored by Bickel and Herzberq (1979) and Bickel, Herzberg, and Schilling

(1981). They developed asymptotic theory and numerical results for a model in

which the extent of the correlation among the errors is assumed to decrease

with the sample size (as might occur, for example, if additional observations

were spread over a wider interval). For situations in which the errors are

assumed to follow a first-order autoregressive process, the authors derived

designs for estimating location and for fitting simple linear regression

models. These designs are described exactly, whereas the papers mentioned in

the previous paragraph gave only complicated characterizations of designs.

Another approach to time dependence is to consider the possibility that

the sequential order of the experimental runs will affect the results through

a polynomial trend. Such a trend can then be included in the model component

of (5.1), rather than in the error component, and it is possible to develop

designs that are orthoqonal to the trend. This approach was first explored by

Daniel and Wilcoxon (1966) in the context of factorial designs and was

extended by Joiner and Campbell (1976). Bradley and Yeh (1980) developed a

theory for trend-free block designs.

6. RESPONSE SURFACE DESIGNS

Response surface methodology was developed by Box and his colleagues at

Imperial Chemical Industries to explore relationships such as those between

the yield of a chemical process and the pertinent process variables (Box and

Wilson 1951, Box 1954, Fox and Youle 1955). In its usual form, response
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surface methodology exploits simple empirical models such as low-degree

polynomials to approximate the relationship between a response variable and a

set of input variables over a current region of interest.

A key intellectual insight in the development of response surface

methodology was the realization that in chemistry, engineering, and physics,

experimental data are often available for analysis much more rapidly than in

agriculture. Thus an efficient way to organize experimental programs in

chemistry, engineering, and physics is to adopt a sequential strategy in which

the experiment proceeds in stages, with each stage designed in the light of

results obtained from earlier runs. The classic factorial designs formed a

basis for the construction of the design at each stage, but typically the

designs were smaller than those used in agriculture. A second important

insight was that the experimental variables in the chemical, physical, and

engineering sciences are frequently quantitative (continuous), whereas the

variables in agricultural experiments are often qualitative (categorical);

this led to the useful idea of rotatable designs, proposed by Box and Hunter

(1957), which seeks designs for which the variance of estimated responses is

constant on spherical shells in the region of interest. Once these

differences had been recognized, the way was open to develop new, more

efficient experimental design strategies that took advantage of them.

Since its introduction in the early 1950's, response surface methodology

has become an accepted and widely used set of concepts and techniques.

Chapter 11 of Davies (1954), Chapter SA of Cochran and Cox (1957), Chapter 10

of John (1971), and the book by Myers (1976) contain explanations of the basic

ideas of response surface methodology, including both the design of response

surface experiments and the estimation and interpretation of the fitted

surface. An introduction to the subject at a more elementary level is given

in Chapter 15 of Pox, Hunter, and Hunter (1978). The review article by Hill

-28-



and Hunter (1966) contains over one hundred references. Finally, a definitive

book by Box and Draper (1984) is scheduled for publication.

One of the important applications of response surface methods, in a

simplified form, has been to improve the performance of existing industrial

processes by systematically varying process variables and gathering data while

the processes operate, without upsetting normal production. This use of

response surface methods for process improvement is known as evolutionary

operation (EVOP). EVOP is an aggressive management strategy in which better

ways of operating a process are actively sought rather than accidentally

discovered. Box and Draper (1969) explain the fundamental principles and

methods of EVOP and discuss how an EVOP program can be implemented. Spendley,

Hext, and Himsworth (1962) proposed an alternative design scheme, known as

simplex EVOP, in which k process variables are placed on a simplex with

k + I vertices. Hahn and Dershowitz (1974) discussed some of the practical

issues that should be considered in using EVOP and reported the results of a

survey indicating that EVOP is not being used in industry as widely as it

could be.

Much of the statistical work on response surface design in recent years

has concerned the use of optimal design theory for response surface studies.

Some authors have advocated the application of the precepts of optimal design

theory to derive response surface designs. Others, however, have questioned

the applicability of optimal design theory to response surface experiments.

Typical of the former group is the series of papers by Galil and Kiefer

(1977a,b, 1979), in which they derived optimal designs for quadratic and cubic

polynomial response surface models when the domain of the predictor variables

is assumed to be a k-dimensional cube or sphere. Designs were derived for a

family of optimality criteria that includes A-, D-, and E-optimality. The
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efficiency of the designs was compared for these and other criteria in the

family. Pesotchinaky (1978) gave expanded results for quadratic models.

Lucas (1976) compared a variety of designs for quadratic models on the basis

of the D- and G-optimality criteria. Some of the computer-derived optimal

designs reported in Section 4 (Mitchell 1974b, Mitchell and Bayne 1978, Galil

and Kiefer 1980b, Welch 1982) also apply to response surface experiments.

Criticism of the use of optimal design theory for response surface

experiments has focused on several issues. One of the major arguments against

the use of optimal design theory is the need to specify a model for the

response function, coupled with the fact that optimal designs are frequently

quite sensitive to the form of the model. This concern stimulated much of the

research recounted in Section 5 to achieve experimental designs that are

robust to the choice of the model. Box and Draper (1959) and Box (1982)

argued that to assume that a linear model such as (3.1) exactly represents the

true response function is especially troubling in response surface studies,

where the linear model is never intended to be more than a reasonable local

approximation. Hence, they advised that the possible effects of bias be

considered in choosing a design.

Box (1982) voiced further criticism of the use of optimal design theory

in response surface studies. Optimal designs for a particular model and

criterion are found by optimizing the criterion over the set of possible

designs, which is typically defined in terms of a prescribed region of

experimentation, within which the predictor variables must be set. A common

assumption is that the region of experimentation is a simple geometric body,

such as a hypercube or hypersphere, or can be transformed to such a region by

centering and scaling the predictor variables. One of the characteristics of

the optimal designs found in the papers mentioned above is that many
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experimental runs are placed at the extreme limits of the region. Box (1982)

observed that, in most response surface experiments, the region of possible

experimentation is not precisely knowni moreover, as design points are moved

further away from one another, the effect of bias on any simple approximating

model is likely to become increasingly severe. Thus the tendency of the

optimal designs to concentrate many runs at the extremes of the design region

must be viewed with some trepidation, especially in the context of response

surface experiments. Similar criticisms were also stated by O'Hagan (1978)

and helped stimulate his Bayesian approach to design.

Other topics related to the design of response surface experiments have

recently been studied. Draper (1982) discussed several methods for choosing

the number of center points in designs for quadratic response surface

models. Hader an, Park (1978) proposed the concept of slope-rotatable

designs, for which the variance of the first partial derivatives of the

estimated response function would be constant on spherical shells centered at

the origin. Slope-rotatability might be a desirable property if the primary

purpose of the experiment is to estimate the slope of the response surface and

there is equal interest in estimating the slope in all directions from the

center of the experimental region. This work is related to that by Box and

Hunter (1957), who proposed the use of rotatable designs, which have the

property that the variance of the estimated response is constant on spherical

shells. Box and Draper (1982) discussed several measures of lack of fit for

response surface designs, and how the fit might be improved by power

transformations of the predictor variables. Box and Draper (1980) discussed a

geometric interpretation for the variance of the difference between two

estimated responses and gave results for quadratic and cubic rotatable

designs.
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7. MIXTURE DESIGNS

In some experimental situations the response depends on the relative

amounts of the predictor variables, but not on the absolute amounts. Typical

examples would be car mileage as a function of the proportions of components

blended into gasoline or the strength of an alloy as a function of the

fractional amounts of constituent metals. The special nature of these

experiments, known as mixture experiments, can be expr,.ed in the following

set of constraints: if X , ....,Xk denote the k predictor variables,

measured as proportions, then for each experimental run we must have:

k
0 ( X c I for all J, and 3IXI - 1. (7.1)

This constraint presents some special problems for experimental design and

statistical modeling because any model which contains linear terms in all the

predictor variables and a constant term will be overparameterized the sum of

the k linear coefficients must be confounded with the constant term due to

the constraint (7.1). Although the particular concern of mixture experiments

is summarized by the constraint (7.1), the theory can be applied more

generally to any problem in which there exist one or more linear constraints

on the predictor variables.

A fortuitous circumstance in the development of statistical procedures

for mixture experiments was Scheff6's work as a consultant for Chevron

Research Corporation. Investigators there who were working on problems

related to gasoline blending asked him for advice on the design of experiments

in which the relative proportions of particular formulations were to be

varied. These problems stimulated Schefff to undertake the first systematic

statistical study of mixture experiments. Scheff6 (1958) introduced a family
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of models for mixture problems and proposed the class of lattice designs,

which place experimental runs on a uniform lattice of points, enabling the

experimenter to explore response variables throughout the entire design

simplex. Scheff4 (1963) proposed simplex-centroid designs, in which runs are

made using mixtures that have equal proportions of some subset of the

components. One stimulus for the simplex-centroid designs was to correct a

weakness of the lattice designs -- their tendency to use many experimental

mixtures that involve only two components, even when the number of components

is large.

A difficulty encountered in many mixture experiments is that some of the

components are subject to upper or lower bounds. Such bounds can produce

design regions with odd shapes for which it is impossible to use the designs

mentioned above. McLean and Anderson (1966) proposed solving this problem by

making experimental runs at the extreme points and various centroids of the

constrained design region. These plans are known as extreme vertices designs

and, as with Schefff's designs, they allow exploration of the entire

experimental region.

Much of the subsequent work on designs for mixture experiments has roots

in the models and designs of Schefff and in the extreme vertices designs of

McLean and Anderson. The most complete reference for mixture problems is

Cornell (1981), which is a readable introduction to the topic and also

discusses much of the most recent research. Reviews of this work are also

available (Cornell 1973, 1979). Although first proposed for gasoline blending

experiments, mixture designs have been applied in a wide variety of

situations. we believe that, in the future, applications of mixture designs

will extend to many new fields as more experimenters become aware of their

usefulness. The most interesting example that has come to our attention
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recently is the use of mixture designs at a cooperative in Prance for blending

different wines to produce a table wine. Previously, only blends that

qualified as ordinary table wines had been produced. However, the designs

succeeded in identifying a blend that received the higher grade of vin

dflimitf de qualitf sup6rieure , allowing the cooperative to sell it at a

premium price. In the remainder of this section, we will review the most

recently published research on mixture designs.

The development of computer programs to assist in selecting experimental

runs has been a particular concern in mixture problems, especially when there

are additional bounds on some of the components. The extreme vertices designs

have been quite popular here, so that most computer programs proceed in two

stages: first, the extreme vertices and centroids of the constrained design

region are identified; then, a design optimality criterion is used to select

the vertices and centroids that will be included in the design. For specific

references, we refer the reader to our discussion of these programs in Section

4 on computer-aided design.

A common situation in mixture experiments is that, in addition to k

mixture variables, there are some process variables that are not subject to

the constraint (7.1). Experimental designs for these problems must specify

settings for both the mixture variables and the process variables. Hare

(1979) generated designs by restricting the mixture variables to a cuboidal

subset contained within the simplex defined by (7.1) and then crossing that

subset with a cuboidal region for the process variables. A different approach

to designing experiments with both mixture and process variables was taken by

Vuchkov, Damgaliev, and Yontchev (1981). They used a sequential procedure to

generate quadratic designs with high efficiency in terms of the D-optimality

criterion.
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When the experimenter wishes to explore only a limited region of the

design simplex, an alternative approach that we feel deserves further

attention is to replace the k linearly dependent mixture components by

k - I linear functions of the components, often called pseudo-components. By

treating the pseudo-components as the independent variables in the experiment,

any standard response surface design that fits inside the simplex can be

used. No special consideration is necessary for process variables: they can

be included as additional variables in the response surface design. Box and

Gardner (1966) proposed a similar idea. Their projection designs were defined

by taking standard designs like two-level factorials and adjusting them to

meet one or more linear constraints like (7.1). A disadvantage of the

projection and pseudo-component designs is that they are typically not

symmetric with respect to the original mixture components.

Cornell and Khuri (1979) proposed designs for three-component mixture

models with the property that the variance of the predicted response is

constant on concentric triangles about the centroid of the simplex. This idea

is analogous to the concept of rotatable designs in response surface studies

(Box and Hunter 1957). The designs are constructed by performing a nonlinear

transformation of the coordinate system and then applying the theory of

rotatable designs. Piepel (1983) offered guidelines to check the consistency

of linear constraints used to restrict the region of experimentation.

S. FACTORIAL DESIGNS

Factorial designs, first developed by Fisher and Yates at Rthamsted, are

one of the major contributions of statistical insight into experimental

design. Their essential feature, the simultaneous study of several factors,

is a marked departure from the common idea that experimenters should vary only
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one factor at a time. As Fisher (1926) observed, factorial designs offer many

advantages: each experimental run gives information on several factors, not

just one; the experiment yields as much information about each factor as

though it alone had been varied; valuable additional information is available

through the ability to check for possible interactions among the factors; and

in the event that no interactions are found, there is a much broader base for

generalizing conclusions on the main effect of a factor, since the effect has

been observed in a variety of experimental conditions.

A further advance was the introduction by Finney (1945) of fractional

factorial designs. These designs allow experimenters to study the main

effects and low-order interactions of several factors in far fewer runs than

required to complete the full factorial designs by sacrificing the ability to

estimate high-order interactions. Fractional factorial designs thus offer

great economy of time and resources when, as is often the case, high-order

interactions are negligible. Plackett and Burman (1946) described a useful

class of highly fractionated orthogonal designs, in which the main effects

of n - I two-level factors are estimated using just n runs. Box and

Hunter (1961a,b) described in detail the theory and application of 2k -p

fractional factorial designs. For experiments in which some factors are used

at more levels than others, Addelman and Kempthorne (1961) and Addelman (1962)

presented a simple technique for deriving designs that give orthogonal

estimates of main effects. The important contributions that factorial and

fractional factorial designs can make to experimentation in the chemical,

physical, and engineering sciences were clearly evident to the initial editors

of Technometrics: many articles described these designs and illustrated their

usefulness.
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The most commonly used factorial designs can be found in most books on

experimental design. John (1971) is an excellent source for the factorial

designs used most often in practice: two- and three-level factorials and

fractional factorials, including Plackett-Burman designs, main effect plans,

and some asymmetric factorials (i.e., designs in which not all factors have

the same number of levels). John's book is directed toward readers with some

mathematical and statistical sophistication. Daniel (1976) also presents many

useful factorial plans and describes a number of interesting applications; the

level is less theoretical than John (1971), but some background in statistics

is necessary. At a more elementary level, the book by Box, Hunter, and Huntez

(1978) describes two-level factorial and fractional factorial designs in

considerable detail. A good source for asymmetric factorial plans is the book

by Cochran and Cox (1957), which also covers the topics mentioned immediately

above, although with a bias toward agricultural examples and terminology.

Davies (1954) also lists many useful factorial designs. Raktoe, Hedayat, and

Federer (1981) is a concise but comprehensive treatise on the mathematical

theory underlying factorial designs, with only a limited emphasis on

applications.

Recent research on factorial designs has considered several problems,

including incomplete factorials, weighing designs, screening designs,

asymmetric factorials, and blocking schemes. A brief review follows.

John (1979) and Smith and Schmoyer (1982) both considered the effect on

two-level factorial designs of incomplete re.plication. John showed that

losing a single observation from a 2k factorial experiment could double the

variance of some of the estimated factor effects. He also examined the effect

of missing observations on design resolution for 2k
-P  experiments. Smith

and Schmoyer investigated the consequences for a two-level factorial of
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terminating the experiment prior to completing all 2k-p runs in the original

plan. Such a situation might arise due to equipment failure or to a conscious

decision to cease experimentation, and it is especially relevant to the

physical sciences, where experiments are often run sequentially (as opposed to

the simultaneous experimentation more common in agriculture). They considered

two strategies: augmenting the best main effects plan for k factors run by

run and deleting runs one by one from the complete design. In both cases, the

run added or deleted is done so on the basis of D-optimality.

Fries and Hunter (1980) proposed the concept of minimum aberration to

compare 2k-p designs of equal resolution. This concept generalizes the

notion of design resolution, which characterizes factorial designs by stating

what high-order interactions need all be negligible in order to assure that

all main effects and low-order interactions can be estimated. (For example, a

design is said to have resolution III if all the main effects can be

estimated, provided that all of the interaction terms are negligible.) Fries

and Hunter defined the aberration of a design as the number of words of

minimal length in the defining relation for the design and gave examples in

which this could be used to compare designs of equal resolution.

Srivastava and Gupta (1979) considered the use of resolution III 2k -p

designs when some of the interaction terms are present. In particular, they

proposed designs that allow for the detection and estimation of an interaction

term, assuming that no more than one interaction is nonnegligible.

Galil and Kiefer (1980a, 1982) thoroughly studied the problem of

D-optimal design for weighing experiments and gave extensive tables of the

known D-optimal designs. The objective of weighing experiments is to

determine the individual weights of k objects in n weighings. For each

weighing, each object must be placed in the right pan of the scale, in the
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left pan, or not weighed. By identifying the right and left pans of the scale

with the two levels of a faztor, the weighing design model can be seen as a

general paradigm for two-level factorial experiments in n runs; in

particular, the 2k-p experiments are a special subset of the general

weighing design problem. Galil and Kiefer creatively combined theoretical

calculations with computer search to prove the D-optimality of some previously

suggested designs and to derive new D-optimal weighing designs. Special

attention was given to the most difficult case: n z 3 (mod 4). Cheng (1980b)

showed that certain weighing designs, including fractional factorials, are

optimal with respect to a very general class of criteria.

Group screening designs are useful when a large number of factors must be

considered and it is desired to find the most important factors with a minimum

of experimental runs. Mauro and Smith (1982) investigated the efficiency of

two-stage group screening designs in which potentially similar factors are

treated as a single factor and varied in unison during a first stage

experiment; a second experiment then studies the significant factor groups in

detail. Mauro and Smith found that these designs performed quite well, both

in terms of identifying significant effects and minimizing the number of runs,

even when the initial grouping is based on little prior knowledge.

Several authors have described low-resolution plans for other factorial

designs. Anderson and Thomas (1979) gave resolution IV designs for sk

factorials, where s is a power of a prime. The designs require s(s-1)k

runs, which is near the theoretical lower bound for an sk  experiment to have

resolution IV. Chacko, Dey, and Ramakrishna (1979) derived orthogonal main

effect plans for 4 32k experiments and showed how they could also be used to

construct orthogonal main effect plans for 4 r3s2k experiments when

2 ( r + s 4 3. Gupta, Nigam, and Dey (1982) derived orthogonal main effect

plans for tsk factorial experiments.
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Cyclic designs have proven to be a useful method to generate blocking

schemes for general factorial designs. These designs exploit the theory of

cyclic groups and are quite easy to construct. The construction and analysis

of cyclic designs for symmetric factorials was described in John and Dean

(1975)y Dean and John (1975) extended the theory to asymmetrical factorials.

The latter article also listed designs for various factor combinations and

blocking patterns. John, Wolock, and David (1972) presented an extensive

catalog of cyclic designs. John (1981) gave a concise list of efficient

cyclic designs.

9. BLOCK DESIGNS

Block designs epitomize one of Fisher's basic concepts of the statistical

design of experiments: the importance of setting off experimental runs into

small groups (blocks) that are highly homogeneous, in order to increase the

precision of the experiment. Classical block designs are intended for

experiments with a single factor that has many levels, unlike the factorial

experiments described in Section 8, which involve many factors, usually at

only two or three levels. When there is only one factor, its levels are

usually referred to as treatments (or varieties) and the principal goal of the

experiment usually involves comparison of the treatments. The purpose of the

blocking scheme, then, is to increase the precision of comparisons among the

different treatments.

The classic blocking plans are randomized block designs (for blocking a

single factor), Latin Squares and their generalizations (for blocking several

factors simultaneously), and incomplete block designs (when the number of

treatments exceeds the number of experimental units in each block). Detailed

descriptions of these and other blocking schemes are availab in many books
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on experimental design. In particular, the books by Cochran and Cox (1957)

and Kempthorne (1952) are good sourcesi both books list many designs. John

(1971) and Davies (1954) also describe many useful block designs.

Block designb have been the subject of much recent statistical

research. In particular, recent work has focused on the application of

optimal design theory to block designs. This area is especially conducive to

optimal design theory because, for many block designs, a linear statistical

model and a precise design region can be clearly stated. Thus the criticisms

surrounding the application of optimal design theory to response surface

studies (see Section 6) are not serious problems for block designs. The

remainder of this section will review some recent results.

One problem that has attracted considerable attention is the design of

unbalanced incomplete block designs. The most efficient incomplete block

designs for studying v treatments in b blocks of k units each are

balanced incomplete block designs, in which each pair of treatments occurs

jointly in the same number of blocks. Not all combinations of v, b, and k,

however, permit the construction of a balanced design. To aid in finding good

incomplete block designs when no balanced design exists, John and Mitchell

(1977) introduced the concept of regular graph designs. These are incomplete

block designs in which each pair of treatments occurs jointly in either

XI or X2 blocks, where X2 = XI + 1. John and Mitchell showed that these

designs are related to a regular graph with v nodes and used graph-theoretic

methods to study their properties. They proved that many of the regular graph

designs possess optimality properties. Cheng (1978a) showed that regular

graph designs are optimal with respect to a large class of optimality

criteria, and Cheng (1980a) and Jacroux (1980) gave conditions for the

existence of B-optimal regular graph designs. Cheng and Gray (1980) showed
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that some special types of regular graph designs are also group divisible.

Cheng and Wu (1981) extended the notion of regular graph designs to include

experiments in which the treatments are not equally replicated.

Jacroux (1982, 1983) investigated incomplete block designs for which the

treatments were not equally replicated and derived some sufficient conditions

for such designs to be E-optimal. Results on the E-optimality of some

balanced and partially balanced incomplete block designs were also given by

Constantine (1981, 1982).

Hall and Jarrett (1981) gave tables of incomplete block designs for

experiments with many treatments (10 4 v 4 60) but no more than 5 replicates

per treatment and block sizes of at most 10. John (1978) described a new

balanced incomplete block design for v - 18 treatments in b - 51 blocks,

with six runs per block and 17 replicates of each treatment. The design is

resolvable and can be split into useful partially balanced subdesigns.

Other research work has studied optimality properties of designs that

simultaneously block several factors. Kiefer (1975) showed with an elegant

proof that generalized Youden designs for simultaneous blocking of two sources

of variation are optimal with respect to a large class of optimality

criteria. Jacroux (1982) gave E-optimal designs for two-way blocking for

experiments with unequally replicated treatments. Cheng (1978b) defined

Youden hyperrectangles, which are higher-dimensional generalizations of

generalized Youden designs and balanced block designs that allow for blocking

many sources of variation, and proved various optimality properties for these

designs. Cheng (1979) gave methods for their construction. Cheng (1981)

showed that in some cases the optimality properties of generalized Youden

designs also hold for a less restrictive class of designs. He called these

"pseudo-Youden" designs and gave suggestions on how to construct them.
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The blocking schemes described thus far assume that the factors to be

blocked in an experiment to compare treatments are categorical variables.

Often, however, important concomitant variables are continuous in nature.

Harville (1974, 1975) and Cook and Thibodeau (1980) have studied the optimal

allocation of experimental units to different treatments when there is

covariate information available for each unit at the time of assignment.

Several authors have studied the problem of block designs for experiments

where the observations may be subject to a correlated error structure. This

problem has attracted attention primarily in agricultural experimentation,

where observations from physically adjacent plots may be correlated, but is

applicable in a broad range of situations. When such plot-to-plot effects are

non-directional (i.e., the errors for two neighboring plots both affect each

other), Freeman (1981) recommended the use of quasi-complete Latin squares,

which are Latin squares with the property that every unordered pair of

elements occurs adjacently twice in rows and twice in columns. Sonneman

(1982) studied the case when the plot-to-plot effects are directional (i.e.,

the error for plot i affects the error for plot i + 1, but there is no

effect in the other direction), as might occur in a repeated measurement

experiment. He proved that complete Latin squares, in which every ordered

pair of elements occurs adjacently once in rows and once in columns, are

D-optimal. Martin (1982) presented regular and treatment-balanced designs for

arranging treatments on a torus when the correlations are assumed to follow a

second-order stationary lattice process.

Kiefer and Wynn (1981) proposed a two-stage design strategy for block

designs with correlated error structures: first, limit consideration to a

class of designs known to be efficient in the absence of correlation (such as

balanced incomplete block designs); then, choose a design from within that

-43-



The blocking schemes described thus far assume that the factors to be

blocked in an experiment to compare treatments are categorical variables.

Often, however, important concomitant variables are continuous in nature.

Harville (1974, 1975) and Cook and Thibodeau (1980) have studied the optimal

allocation of experimental units to different treatments when there is

covariate information available for each unit at the time of assignment.

Several authors have studied the problem of block designs for experiments

where the observations may be subject to a correlated error structure. This

problem has attracted attention primarily in agricultural experimentation,

ihere observations from physically adjacent plots may be correlated, but is

applicable in a broad range of situations. When such plot-to-plot effects are

non-directional (i.e., the errors for two neighboring plots both affect each

other), Freeman (1981) recommended the ase of quasi-complete Latin squares,

which are Latin squares with the property that every unordered pair of

elements occurs adjacently twice in rows and twice in columns. Sonneman

(1982) studied the case when the plot-to-plot effects are directional (i.e.,

the error for plot i affects the error for plot i + 1, but there is no

effect in the other direction), as might occur in a repeated measurement

experiment. He proved that complete Latin squares, in which every ordered

pair of elements occurs adjacently once in rows and once in columns, are

D-optimal. Martin (1982) presented regular and treatment-balanced designs for

arranging treatments on a torus when the correlations are assumed to follow a

second-order stationary lattice process.

Kiefer a: i Wynn (1981) proposed a two-stage design strategy for block

designs with correlated error structures: first, limit consideration to a

class of designs known to be efficient in the absence of correlation (such as

balanced incomplete block designs); then, choose a design from within that

-43-



class that offers some protection against possible correlation. They

considered a "nearest neighbor" correlation structure and defined the class of

equineighborhood designs, which involve restrictions on the number of times

pairs of treatments can be adjacent to one another. Cheng (1983) presented

methods for constructing such designs.

Bechhofer and Tamhane (1981) studied designs for experiments to compare

v - I test treatments with a control treatment. They introduced the concept

of balanced treatment incomplete block (BTIB) designs, which are symmetric

with respect to the test treatments and between each test treatment and the

control. However, the control may be replicated more often than the test

treatments. Bechhofer and Tamhane (1983) further studied these designs and

gave tables of optimal allocations of runs among v treatments in order to

make one- or two-sided confidence statements. Majumdar and Notz (1983)

derived designs for this problem with respect to a variety of optimality

criteria. Most of their designs belonged to the class of BTIB designs defined

by Bechhofer and Tamhane. Constantine (1983) showed that a simple way to

generate a design which minimizes the average variance of the treatment-

control comparisons is to reinforce a balanced incomplete block design (for

the v - I test treatments) by adding the control treatment to each block.

Again, this is a BTIB design.

10. NONLINEAR MODELS

Nonlinear models play an important role in describing physical, chemical,

and engineering systems. By nonlinear models, we refer to situations in which

the response Yi from the ith experimental run is described by the model:

Yi = n(zi;f) + C i, (10.1)

where the response function n is a nonlinear function of the parameter
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vector 0. Nonlinear models typically arise when the tesearcher has in mind a

theory that describes the effect of the predictors x on the observed

response Yi. Even if the theory is incomplete, the nonlinear model may be

more useful than a competing empirical model as a first approximation because

it more effectively captures the main features of the data. It is often

possible to obtain more accurate and more parsimonious models by exploiting

the researcher's scientific knowledge to suggest a nonlinear model.

Special design problems arise for nonlinear models because the best

design depends, in general, on the unknown parameter values. Investigators

are thus in the rather paradoxica, position of having to know at the design

stage the very quantities that they are conducting the experiment to

estimate! Two reviews of work on nonlinear models, including experimental

design, are Cochran (1973) and Bates and Hunter (1984).

Fisher (1922) was perhaps the first statistician to study experimental

design for a nonlinear model. He considered the problem of designing

experiments for the estimation of the density of small organisms in a liquid

by means of a series of dilutions. Box and Lucas (1959), in a pioneering

paper on experimental design for nonlinear models, showed how the D-optimality

criterion could be applied by working with a linearized approximation to the

nonlinear model and using the experimenter's initial guesses as to the likely

values of the parameters. Box and Hunter (1965a,1965b) advocated a sequential

strategy, in which the parameter estimates are updated after each trial and

the next design point is then chosen with the aid of the improved estimates.

Hill (1980) showed that if a nonlinear model is linear in some of the

parameters, then the D-optimal design does not depend on the value of the

linear parameters.
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In designing experiments to discriminate among several conjectured

models, which was discussed in Section 5, special attention has been paid to

the case of nonlinear models. This problem typically arises when there are

competing theories to explain the effect of the predictors on the response,

each of which implies a different model function n. Experiments are then

desired that can discriminate among the models, and so suggest which of the

proposed theories seems to be the most valid. See Hunter and Reiner (1965),

Box and Hill (1967), Atkinson and Cox (1974), Atkinson and Fedorov (1975a,b),

and Atkinson (1981).

Other research work has considered experimental design for particular

types of nonlinear models. For example, Currie (1982) compared different

designs for estimating the parameters of the Michaelis-Menten equation, which

is often used to model enzyme kinetics.

A number of researchers have studied the design of efficient experiments

for quantal response data, in which the probability of observing a response is

assumed to be a function (typically nonlinear) of some underlying variables,

such as dose or stress. A common goal of quantal response experiments is to

estimate a stress at which the probability of observing a response obtains a

pre-specified level, such as .5. Robbins and Monro (1951) proposed a

sequential design scheme (known as stochastic approximation) for this problem,

in which the stress for each experimental run is determined by the stress and

the outcome of the previous run. Much subsequent work has continued to

exploit a sequential approach (see, for example, Wetherill 1963, Tsutakawa

1972, Chernoff 1975, Owen 1975, and Anbar 1978). Other authors have developed

non-sequential design schemes for quantal response experiments. Meeker and

Hahn (1977) proposed experimental designs to estimate the probability of

response at a specified stress, when it is assumed that the probability at
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that stress is close to zero or one, and that the probability of response can

be accurately represented by a logistic regression model. Abdelbasit and

Plackett (1983) also considered logistic regression models and derived designs

that maximize information on the parameters in the model. Maxim, Hendrickson,

and Cullen (1977) proposed designs for experiments with two stress variables.

11. FUTURE DIRECTIONS

In the preceding sections we have reviewed statistical research on

experimental design, in this section we discuss some areas that we think

deserve attention in the years ahead. We will begin our discussion with some

areas that are natural outgrowths of the recent efforts in experimental design

that were discussed in the preceding sections. Then, in individual

subsections, we will discuss some other areas that have not been widely

explored: designs for sequential experimentation, considering multiple design

objectives, planning experiments in the real world, education, and interactive

computer programs for designing experiments.

The increasing awareness of the importance of assumptions upon which

statistical methods are based has led to much useful research in design

robustness (see Section 5). We believe that the problem of designing

experiments that will not be overly sensitive to assumptions should be a key

concern oZ statisticians in coming years.

Factorial designs have traditionally been used to study a relatively

small number of factors. In many experiments, however, a large number of

factors (perhaps 50 or 100) may be initially suspected to be important. The

use of highly saturated or even super-saturated factorial designs to study

such systems is a problem that should be studied further. It has been

reported that in Japan experiments with more than 100 process variables have

been successfully performed in industry. Especially influential in Japan have
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been Taguchi's ideas on orthogonal arrays (see Taguchi and Wu 1979, Phadke

1982). Another direction worthy of consideration, suggested by Tukey, is the

use of designs that are not orthogonal, but in which the correlations of the

parameter estimates are quite small. The idea here is that by sacrificing

some orthogonality, it may be possible to gain much in terms of the number of

factors that can be studied.

The design of experiments for mixture problems is likely to remain a

topic of considerable interest. Some of the particular questions that should

stimulate more research are designs to combine both mixture and process

variables, designs to study only a limited region in the mixture simplex, and

computer algorithms for design, especially when additional constraints on the

mixture components yield a complicated design region.

The study of experimental design for nonlinear models has lagged far

behind the research devoted to experimental design for linear models. One

reason for this scarcity of work is the inherent difficulty, discussed in

Section 10, that designs generally depend on the unknown parameter values.

None the less, nonlinear models are valuable tools for studying processes in

the chemical, physical, and engineering sciences; more research on designing

experiments for nonlinear models should certainly be undertaken. One

interesting question that has not been studied is the design of experiments

for nonlinear models that are proposed as tentative empirical

approximations. A good design should then allow for estimation of the

proposed model, and should also provide a basis for suggesting modifications

to the model so that it will more accurately represent the process under

study. Another problem that deserves further attention is the link between

empirical models and underlying nonlinear mechanisms. This possibility was

first noted by Box and Youle (1955), who found that a fitted response surface

model for a chemical experiment suggested a theoretical nonlinear model.
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11.1 Designs for Sequential Experimentation

Box and Youle (1955) described the iterative nature of experimentation in

terms of a cycle that may be repeated many times in the course of an

investigation. It consists of four steps: conjecture (experimenter

formulates an idea, hypothesis, model, theory), design (experimenter plans the

experiment), experiment (experimenter collects the data), and analysis

(experimenter extracts useful information from the data). The analysis will

frequently cause the experimenter to modify the original conjecture, or even

to completely abandon it, in favor of a better conjecture. A new cycle then

begins. In the chemical, physical, and engineering sciences, the time to

complete a cycle is most often much less than that required in agricultural

research, where the basic concepts of experimental design originated. Many

new design possibilities can thus be exploited, since the results of previous

experiments are available to aid in the planning of future experiments;

however, new problems arise on which some research has been done, but more

work is definitely in order.

Response surface methodology has always stressed a sequential approach,

as is illustrated by the discussion in Box, Hunter, and Hunter (1978, Chapter

15). Even in response surface studies, however, the experimental plan

typically proceeds by stages and when stages involve many runs (as is likely

if many factors are involved), useful methods might be proposed to further

decompose each stage. For example, the first runs of a stage might indicate

that another region in the factor space is more interesting than the region

currently being explored, that unexpected interactions or other complications

are present, that some transformation of the predictor variables is called

for, or that unexpected simplifications seem to be possible (e.g., one or more

factors are inert, or a simpler model form is appropriate -- perhaps, though
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not necessarily, after transformation). In such cases, it would be useful to

design the experiment in such a way that initial plans could be modified well

short of completion.

Some authors have considered methods to break down experiments into

smaller pieces. Box (1982) showed how blocking strategies could be used to

construct a sequential scheme for experimentation. Another strategy that

might be useful here is to employ the 3/4 factorial designs introduced by

John (1962). Daniel (1973) studied the "one-at-a-time" approach, in which

experimental runs are added sequentially from an overall factorial design to

create useful designs at each step. A similar idea was proposed by Smith and

Schmoyer (1982) (see Sect. 8). A related problem arises when it is difficult

or expensive to alter the settings of some factors in an experiment. Draper

and Stoneman (1968) and Dickinson (1974) have studied the problem of designing

factorial experiments when it is desired to minimize the number of changes in

factor settings.

It has been suggested, with some irony, that the best time to design an

experiment is after the experiment has been completed because one then has

more knowledge of the process under study -- what variables are important,

over what ranges, in what metrics, and so on. By designing experiments

sequentially, we can, in a sense, approximate this happy (but impossible)

situation by "peeking" at the answer and modifying the design accordingly.

Such a sequential approach would be optimal in the sense that the planning of

each experimental run takes into account all the information available up to

the time it is performed. However, using one of the standard design criteria,

in which the settings for each run are precisely specified, the investigator

would lose the benefits of randomization. In general, the consequences of

such a loss are not known and might be a rewarding topic for future research.
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11.2 Considering Multiple Design Objectives

Bor and Draper (1975) listed 14 different goals which might be important

in designing a response surface experiment. Additional goals were listed by

Herzberg (1980). Most of the goals in those lists are potentially important

in almost any experiment. And the lists are certainly not exhaustive.

Experimenters' purposes are complex and often change to reflect new

circumstances. Capturing their goals in mathematical terms is an intellectual

challenge. Box (1982) stressed the need to design experiments with all

important goals in mind, not just one or two. This point is especially

important in light of the influence of optimal design, which usually employs a

single criterion function. It is good that computer programs that have been

developed to search for optimal designs (see Section 4) also compute and

output other characteristics of the best designs found, and not just the

single criterion by which they search.

Some useful research might be devoted to exploring which goals make

similar demands of a design and which goals make contradictory demands. As an

example, one way to achieve precise estimation and to allow adequate checks

for lack of fit is to increase the sample size; these goals are

complementary. Increasing the sample size, however, contradicts the goal of

minimizing cost. Another example concerns experimental designs to

discriminate among several nonlinear models. As was pointed out by Hill,

Hunter, and Wichern (1968), such designs may be quite inefficient for

estimating the parameters of the chosen model. They proposed alternative

designs that also took parameter estimation into consideration. Further study

might suggest effective compromises which allow several goals to be met

reasonably well. Some of the work described in Section 5 has attempted to do

this, compromising between efficient estimation of an assumed model and the
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ability to estimate a more complicated model. A related issue is the problem

of designing an experiment that has more than one response (see Draper and

Hunter 1966, 1967). An efficient design for one response may not be efficient

for some other response. Again, methods are needed which allow for some

compromise, so that a design which is reasonably efficient for all the

responses can be achieved. Further work in this area would be welcome.

11.3 Planning Experiments in the Real World

Before any formal experimental plan can be laid out, it is essential to

state clearly the goals of the experiment and to discuss possible factors that

might substantially affect the experimental results and the ability to

generalize from them. Although, realistically, there may be infinitely many

factors that might affect the results, the experimental design will be able to

study only a small subset of them. Thus decisions must be made as to which

factors will be systematically varied and over what ranges, which factors held

constant, and which factors that are not subject to control should be observed

for possible use as covariates in the analysis. (See Hahn 1982a for a useful

discussion.) The likely effect of the factors on the experimental results

should also be considered. Sometimes current knowledge of the basic mechanism

of the system being studied may suggest a useful nonlinear model and the

experiment should then be designed with this model in mind. It is usually

hoped that the remaining factors, whose effects will all enter into the

"error" term in (5.1), are unimportant. Furthermore, it is hoped that if any

of these presumably unimportant factors do have large effects, randomization

will succeed in neutralizing them. Sometimes the impact of such lurking

variables becomes evident only when further experimentation is unable to

replicate the original results and a search for additional important factors
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is initiated. The possible presence of influential lurking variables helps

explain the importance of replicating scientific results by more than one

experimenter.

Every good experimental program should consider the issues mentioned in

the preceding paragraph. They are especially important, however, for

statisticians who aid in planninq experiments, since statisticians will often

lack intimate knowledge of the subject area in which the experiment is being

conducted. Consulting statisticians have found, as Fisher did, that asking

questions to clarify these issues and to learn about the experiment is often

valuable, not just for their own enlightenment, but also to force

experimenters to explain and justify their ideas. As Cochran and Cox (1957)

observed: "The statistician who expects that his contribution to the planning

will involve some technical matter in statistical theory finds repeatedly that

he makes a much more valuable contribution simply by getting the investigator

to explain clearly why he is doing the experiment, to justify the experimental

treatments whose effects he proposes to compare, and to defend his claim that

the completed experiment will enable its objectives to be realized" (p. 10).

An illustrative example is the story in Hunter (1981a) of a successful

experimental planning session in which the statistician did no more than to

ask the two principal investigators to explain the goals of the experiment.

The investigators were surprised to discover that each had a different

understanding of the goals, but after 45 minutes of vigorous debate, they had

established a clear consensus.

How can a statistician learn about the goals of an experiment? What are

the important questions to ask at the initial planning phase of an

investigationt How can a statistician elicit information which he may regard

as crucial to a good design, but that the experimenter regards as marginal?
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Joiner and Pollack (1982, p. 334) listed a number of issues that they have

repeatedly found to be important. The importance of good consulting skills

and the benefits to be derived from working in this area are underrated by

statisticians. For information on statistical consulting, see Boen and Zahn

(1982), McCulloch et. al. (1982), Joiner (1982), Zahn and Isenberg (1983), and

the references listed therein. One important way for statisticians to help

themselves is to learn more about the subject matter field(s) in which they

consult. They should continually ask questions about the theory underlying an

experiment. A deeper understanding of the basic mechanisms that govern the

process being studied can often suggest more efficient ways to design and

analyze experiments. We believe that the role of the statistician as a

planner of experiments is deserving of special consideration. As one

suggestion, statisticians who have designed many experiments might consider

sharing some of the things they do that seem to be most helpful to their

clients, including techniques they use to ensure that they have a clear

understanding of the nature of the experiment.

One of the strengths of statistical experimental design is the ability to

view experimentation in terms of abstract mathematical models. This abstract

view has allowed statisticians to recognize common ground in experiments that

otherwise appear to be quite different and has facilitated the invention of

many designs that are useful across a broad range of subject areas. In many

practical applications, however, idealized, abstract experimental plans must

be tempered by the reality of the particular experimental setting at hand.

(See, for example, the discussion in Cox 1958, Chapter 9). In particular,

designs that have been derived using mathematical criteria should be used as a

guideline, not followed slavishly. Consulting statisticians have often found

that a visit to the laboratory, plant, or field where the experiment will
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actually be carried out is an invaluable aid in proposing a design. An

experimental design must be tailored to fit the experiment and not vice versa.

An experimental design that looks great on paper is of little use if it

is not followed. Sometimes, in the middle of an experiment, the investigator

discovers that some of the planned runs cannot be made, or that the experiment

must be terminated early. Some research on how to proceed when the original

experimental plan cannot be carried to completion was reported in Sections 6

and 8, but more is needed.

Statistical consultants who propose experimental designs must cooperate

closely with the experimenter, so that the latter clearly understands the

design and why it is important. In this regard, it is desirable to stress

simplicity in developing new experimental designs, but this is a property that

is rarely mentioned. Research indicating what difficulties experimenters

encounter in applying frequently advocated designs might be of great use to

statisticians who design experiments. One suggestion is that the statistician

actually participate in running the experiment, or at least be present during

the collection of data, in order to obtain first-hand knowledge of all the

unforeseen problems that are encountered. This practice can be especially

helpful when there are some statistically important factors that the

experimenter regarded as inconsequential, and never mentioned to the

statistician.

Some readers may think that the questions raised in this section are too

trivial to be the subject of statistical interest. We don't think so. To the

contrary, we think that these are the most important questions to address and

we encourage more statisticians and scientists to share their experiences with

problems t'ey have encountered in planning experimental programs. The article

by Hahn (1984) is an excellent example of what we have in mind. His

description of six experiments in which he participated as a statistical
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consultant illustrates how effectively a well-designed experiment can work and

also how ingenuity must often be used to make the design fit the needs of the

experimenter. Joiner (1977) described the design and analysis of an

experiment with a number of unusual, non-standard problems that had to be

solved. See also Hooke (1980), Hunter (1981a,b), and Bishop, Peterson, and

Trayser (1982). We think more articles of this nature would benefit all of

us.

Discussion of the practical problems encountered in planning real-world

experiments, sample surveys, and censuses should be included in the training

of every scientist and of every statistics student. Too often these problems

are swept aside in an instructor's desire to teach material on the theory,

rather than the pcictice, of statistics.

There are indications that increasing use is being made of statistically

designed experiments. In Europe, for example, especially in chemistry, the

use of designs is becoming widespread, following the leadership of

Phan-Tan-Luu, Carlson, and others (see, for example, Carlson, Lundstet,

Phan-Tan-Luu, and Mathieu 1983, Carlson, Nilsson, and Str5mqvist 1983, Lazaro,

Bouchet, and Jacquier 1977, and Brunel, Itier, Commeyras, Phan-Tan-Luu, and

Mathieu 1979).

11.4 Education

The growth of knowledge in experimental design over the last 25 years has

been tremendous. Many scientists are now aware that statistically designed

experiments can greatly increase the efficiency of their research work, which

is to the credit of the many individuals who have worked in the field, as well

as to journals such as Technometrics that have adopted as a clear priority the

dissemination of statistical advances in the chemical, physical, and

engineering sciences.
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Far more work in education is absolutely necessary. Many experimenters

still have little or no idea of even such basic statistical concepts as

blocking, replication, randomization, and factorial design. Every applied

statistician has a collection of sad tales in which clients asked them to

salvage a poorly-planned experiment with a clever analysis. But the damage

done by poor experimental design is irreparable. No amount of analysis can

create information where none exists in the first place. By contrast,

well-planned experiments often require only simple analyses in order to reach

clear, unambiguous conclusions. Yet our impression is that many

poorly-planned experiments are performed. Indeed, Mead and Pike (1975), in

their review of the use of response surface methodology in the biological

sciences, concluded that poorly-planned experiments were more the rule than

the exception.

It is important to remember how much we can accomplish as teachers.

Statistics should be an essential tool for science and engineering students,

but it is often regarded as a subject that is too marginal to include in the

curriculum. Perhaps one effective way to convince colleagues in other fields

of the value of statistical training would be to increase the emphasis on the

design of experiments. Many important ideas in the design of experiments can

(and should) be taught in introductory statistics courses for university

students.

Elements of experimental design can also be taught to high school, junior

high school, and grade school students. The difference between correlation

and causation, examples of nonsense correlations, how to set up valid

comparative experiments, the weakness of varying one variable at a time, and

the efficacy of two-level factorial experiments are useful topics to cover.

Students need to be taught ideas and procedures that will help them gather
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information to better understand the world around them. For example, Dalia

Sredni, a seventh grader in California, won first place in a county science

fair by conducting a 23 factorial design to study the effects of varying the

oven temperature, baking time, and amount of baking soda on the height,

consistency, texture, and taste of a cake. Students will welcome the

opportunity to plan and conduct experiments of their own choosing. Active

learning through experiments can be a refreshing change from the more usual

passive learning via reading and listening, allowing students to enjoy the

element of surprise and the thrill of discovery.

11.5 Interactive Computer Programs

The development of interactive computer programs to aid in the design of

experiments will certainly be a focal point in the years ahead. Researchers

currently have at their disposal computer packages which allow them to perform

almost any standard method of data analysis. No comparable software in the

field of experimental design has achieved such widespread use. Easy-to-use,

interactive, computer packages could greatly aid researchers in choosing a

good experimental design. More important, just as the availability of

computer software has led to a revolution in the kinds of data analyses which

researchers now regard as essential professional tools, so will software for

experimental design lead to a revolution in researchers' awareness of

statistically designed experiments.

Some comments are in order to differentiate between the research that we

discussed in Section 4 and the ideas of the preceding paragraph. The research

which has been done thus far has been devoted largely to developing numerical

algorithms which can generate designs with certain desirable properties (such

as D-optimal designs). These algorithms have succeeded in finding many useful
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designs; however, they are intended more for use in statistical research than

for use by experimenters. What we have in mind here is the development of

interactive "expert" software packages that experimenters themselves could use

to help them design their experiments, in much the same way they would obtain

advice from a statistical consultant.

The development of good computer software for experimental design is not

a panacea, any more than the existence of statistical analysis packages has

been. The proliferation of sophisticated statistical analyses has included

many instances where the use of a statistical technique was ill-advised and

led to unjustified conclusions. It is important that the users of

experimental design packages have at least some knowledge of the basic

statistical principles of experimental design. It is also important that the

software be intelligent enough to ask the experimenter many of the same

questions that a good statistical consultant would ask and to recommend that a

statistician be consulted in special circumstances. Thus the comments of the

preceding sections regarding the role of the statistician in planning

real-world experiments and as an educator should also be seen as essential

companions to the development of computer programs for experimental design.

we believe that the benefits of experimental design software far outweigh

the potential hazards. Many experiments could be improved substantially by

the use of simple, well-established statistical designs. The existence of

good software for experimental design would be a great step toward achieving

that goal.
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12. SOME RECOMMENDATIONS

We conclude with three sets of recommendations addressed to experimenters

and statisticians. The theme that runs through these recommendations is that

important advances in the theory and practice of experimental design can be

achieved if experimenters and statisticians converse with and learn from one

another. If communications were improved, each group could help shape future

research in the other's area in significant ways. If such dialogue is to bear

fruit, concerted effort will be needed to facilitate visits to each other's

"camps" to learn the language, customs, problems, and goals of the other

group.

1. Teaching and Learning about Experimental Design. Experimenters: if

more of you were aware of the concepts and techniques of statistical

experimental design and used them in your work, research efficiency -- the

amount of information gained per unit of resources used (money, time, etc.) --

in industry, government, and academia could be improved substantially. You

need to learn how statistical methods can be combined with the science and

technology you know so that you can use that knowledge more effectively in

planning experiments to acquire new information; the feeling among some

scientists that statistical methodology is a substitute for that knowledge is

an unfortunate misconception. Statisticians do not by any means have all the

answers, but they have thought deeply about experimental strategy. Many of

you could help yourselves considerably by studying what statisticians have

written on the subject of experimental design. Those of you who realize the

value of statistically designed experiments could help your colleagues by

explaining to them the benefits of such an approach.

Statisticians: whether you are teaching statistics in service courses

for students from other departments, in courses for your own students, or
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special courses (such as continuing education courses for persons in

industry), teach proportionately more design and less analysis than you do

now. Units on statistics for high school and grade school students should

also emphasize (and perhaps begin with) experimental design. Of the two large

areas of statistics, data collection and data analysis, the first is more

important. A bad design yields data that contain little information, and no

amount of clever analysis can extract much information where little exists.

Put more positively, the return on investment in good statistical designs can

be quite handsome -ndeed. Talk to some experimenters who have tried it both

ways. They'll give you stories you can tell your classes.

2. Using Experimental Design in Practice. One need only glance through

journals such as Science to realize how infrequently statistical principles of

experimental design are used in the scientific study of complex systems.

Porter and Busch (1978) is an exception that proves this "rule." Research

workers often consult statisticians, if at all, only after they have assembled

their data and encountered difficulties in analyzing them. In many of these

situations, the application of basic statistical principles of experimental

design would have generated data that were much more informative, not to

mention much easier to analyze. Scientists and engineers could reap great

benefits by learning and using these principles.

How useful is statistical experimental design in planning experiments?

For those of you who hold managerial positions and would like to gauge the

possible benefits, we would like to suggest an experiment. In the next year,

divide a suitable group of experimenters in your organization into two

subgroups, using randomization and perhaps blocking. Provide one of the

subgroups with training in statistical experimental design. The training

should emphasize the practical rather than the theoretical aspects of the

-61-



subject. At the outset, decide on criteria that will be used to assess the

research efficiency of these individuals and how the judging will be done.

For example, after the passage of a suitable period of time, the reports

written by these experimenters could be judged by a panel of experts.

Alternatively, hand out identical assignments to two experimenters or teams of

experimenters, one of which uses statistically designed experiments and one of

which does not. (If you carry out such an experiment, we would like to know

what happened.)

Stories commonly swapped among statistical consultants often end this

way: "If they had only come to talk to me before they got themselves into

that mess, I could have been so much more helpful." (Incidentally, lawyers,

doctors, and counselors of all kinds share this same frustration.) Yet the

payoff from good design is frequently so great that it is worth the continued

effort needed to convince people to talk to you at an early stage in their

work. The general problem is that they need to be educated about

statistics. The specific problem of persuasion is sometimes solved by

communicating to potential clients "success stories" that feature situations

or experimenters they know first-hand. Save such stories and use them.

Consultants: with persistence, with creativity, with good humor, with

patience, try to get clients to come to you before they collect their data, so

you can give them advice on experimental design and so they can reap the

rewards. New consultants: lay some long-term plans to cope with this problem

and don't get discouraged. Discouraged consultants: revive your good

intentionsi talk to consultants who have been able to get clients to come to

them early for advice on design and learn from them. Consultants who've been

successful in this way: publish some of your tips.
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3. Establishing and Extending New Frontiers in Experimental Design.

Experimenters: when you learn about the work that statisticians have done on

experimental design, many of you will conclude that it is not useful for the

work that you do. In fact, some of you will see an enormous gap separating

published statistical work and your own needs. You can help statisticians to

do better research if you would communicate your perceptions to them.

Statisticians need feedback, information, and advice from experimenters. What

forums can be developed to expedite such communication? At professional

meetings -- both those of experimenters and those of statisticians -- special

sessions should be organized for discussion of such topics. Space in

statistics journals should be made available for communications from

experimenters concerning research work that they would like to see

statisticians undertake. A model of this type of publication is provided, for

example, by Rosenblatt and Spiegelman (1981). In a reciprocal manner,

scientific journals should provide space for statisticians to make "guest

appearances" as Youden did in a popular series in Industrial and Engineering

Chemistry and Hahn has been doing in a similar series in Chemtech.

Scientific investigations have served and must continue to serve as a

touchstone for statistical research in experimental design. The crucial

insight that experimental design should be a branch of statistics became

evident to Fisher because of his close interaction with experimental

scientists. As Box (1983) observed of Fisher's work at Rothamsted: "One can

clearly see the ideas of randomisation, replication, orthogonal arrangement,

blocking, factorial designs, measurement of interactions, confounding, all

developing in response to the practical necessities of field experimentation"

(p. 5). New ideas in the 1950's on response surface methods and, in more

recent times, on mixture designs were similarly stimulated by the needs of
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experimenters. Much of the novel and useful work in experimental design has

been done by statisticians working with or consulting for experimenters in

agriculture and industry.

Statistical research exploits more or less general mathematical

abstractions of particular experimental settings. Consequently, it is always

helpful for statisticians to study the experimental context that gives meaning

and relevance to the mathematics because it may reveal explicit or implicit

limitations to the theory that has been developed up to that point. We urge

research statisticians interested in breaking new ground in experimental

design to consult with and, preferably, work collaboratively with

experimenters who are working on worthwhile projects -- as Box did at Imperial

Chemical Industries and Fisher did at Rothamsted Experimental Station.
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